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MOLECULAR AND BROWNIAN DYNAMICS 

INVERSE POWER FLUIDS 
SIMULATIONS OF SELF-DIFFUSION IN 

D. M. HEYES and A. C .  BRANKA* 

Department of Chemistry, University of Surrey, Guildford, GU2 5XH 
(Received 17 January 1994) 

We compare the structural, thermodynamic and dynamical behaviour of a model colloidal system with that 
of the equivalent atomic system using the simulation techniques of brownian dynamics and molecular 
dynamics. In the process we establish the important role made by solvent mediated many-body hy- 
drodynamics on colloidal single particle motion on “short” and “long” time scales. The short and long-time 
self-diffusion coefficients of model stabilised colloidal particles were calculated at solids volume fractions up 
to 0.527 using a hydrodynamics-free Brownian Dynamics, ED technique with model colloidal particles 
interacting through a r -  36 repulsive pair potential. We have improved the simulation technique to follow the 
self-diffusion process over several molecular diameters, required for the evaluation of the long-time diffusion 
coefficient. The simulation long-time diffusion coefficient follows closely the behaviour of the experimental 
short-time diffusion coefficient for volume fractions below ca. 0.4. 

KEY WORDS: Colloidal particles, many-body hydrodynamics. 

1 INTRODUCTION 

The self-diffusion behaviour of colloidal particles can be interpreted in the light of 
essentially two key time-scales. As a consequence of the large colloidal particle mass, its 
velocity fluctuates on a “Brownian time scale”, tg = m/& where m, is the Brownian 
particle’s mass and 5, is the Stokes friction coefficient (for stick boundary conditions, 
5 = 37cq,o, where qs, is the solvent viscosity and 0 is the diameter of the Brownian 
particle). The timescale, zB, is many orders of magnitude smaller than the time it takes 
the particle to move a distance of order its diameter which we denote by, z, - oZ/D, .  Do 
is the self-diffusion coefficient of the colloidal particle at infinite dilution, which is 
related to the friction coefficient by, Do = kBT/t  where T is the temperature. For time 
scales increasing from zg, self-diffusion of the colloidal particle is dominated by a range 
of coupled processes which include the random collisions from the solvent molecules, 
the solvent viscosity, the medium-mediated hydrodynamic interactions between the 
colloidal particles, temperature and the potential field established by the other 
colloidal particles at each time. The self-diffusion of the colloidal particle is influenced 
by all of these factors. At very short times a colloidal particle diffuses in an approxi- 
mately static configuration of surrounding molecules. This is called the “short time” 
regime. In the time, t range, z, >> t >> zB the self-diffusion coefficient is essentially 

* Permanent address: Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 
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96 D. M. HEYES AND A. C. BRANKA 

constant and is called the short time diffusion coefficient, Ds. At longer times, after 
a particle has diffused a distance of order its diameter, the diffusion process has been 
slowed down by the interaction of the particle with its cage of particles. This quantity is 
less amenable to a purely analytical description because changes in the neighbouring 
particles’ positions during the translational motion need to be taken into account. The 
hindered passage of the particle through its cage of surrounding particles slows down 
its rate of progress, resulting in the diffusion coefficient in this “long-time” regime 
falling below the value of Ds. As t >> T ,  the diffusion coefficient tends to a constant value, 
which is called the “long-time” self-diffusion coefficient DL. Both self-diffusion coeffi- 
cients can also be obtained from the ratio of the average velocity of a tagged particle 
subjected to an external force [I] .  The short time diffusion coefficient has been 
measured by multiple light scattering, [2] while the long time diffusion coefficient is 
amenable to a wider range of techniques including florescence recovery [3] and photon 
correlation spectroscopy [4, 51, 

Both Ds and DL depend on solids volume fraction. The difference between Ds and DL 
is some measure of to what extent a colloidal particle is retarded by coupled solvent- 
mediated forces and particle migration at long times. In the limit of the volume fraction 
4 30, 

D L = D 0 ( 1 - a 4 )  t>>T,, (1) 

and 4 = nNa3/61/: There are a range of values for the constant a in the literature; 
analytic values of a depend on the level of the dynamical approximation, ranging 
between - 0.08 <a  < - 2.625, for example [6]. There have been experimental 
measurements of the volume fraction dependence of Ds and D L  over the whole liquid 
range [2,4]. DL/D,  < 0.1 at the volume fraction at which crystallisation takes place [7]. 

It is interesting to compare the dynamical behaviour of the model colloidal liquids 
and their molecular fluid counterparts. Both types of fluid can be to a certain extent 
represented by an equivalent hard-sphere fluid, on assignment of an effective hard- 
sphere diameter, @ to the real particle [ l  1,121. A knowledge of the density dependence 
of the transport coefficients of the hard-sphere fluid is often required. The density 
dependence of the self-diffusion coefficient of the hard-sphere fluid is now well-known, 
with several analytic fits in the literature. For N hard-spheres in volume V,  we define 
a reduced number density, p = Na3/I/: A fit to simulation data given by Speedy 181 is, 

D = Do,( 1 - (&))(l + ~’(0.4 - 0.83~’)).  

Erpenbeck and Wood have been fitted their M D  hard-sphere simulation data to the 
expression, 

D = Dl;( 1 + a l p  + azp2 + a,$), (3) 

where a, = 0.038208154, u2 = 3.182808 and a3 = - 3.868771766. Both Eq. (2) and 
Eq. (3) include a reference self-diffusion coefficient. The diffusion coefficient for an ideal 
hard sphere gas, Do,, is determined from kinetic theory to be, 

Do, = 3(k, T/nm)“2/8pa2, (4) 
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COLLOIDAL SINGLE-PARTICLE MOTION 97 

and DE is the Enskog theory extension of these basic assumptions to finite density, 

DE = 1.01896 Doo/g(a),  

where g(o) is the value of the pair radial distribution function at the contact of the spheres. 
In the context of colloidal liquids, Eq. (2) and Eq. (3) are conceptually unsatisfactory, 

because they use a reference self-diffusion coefficient which is based on the kinetic 
theory of gases in the limit of zero density, Do, or alternatively, its finite density 
extension, D,. There is no reason to expect the ideal gas to be pertinent to the colloidal 
state. Nevertheless, the behaviour of the “molecular” hard-sphere fluid at finite 
densities should, in some sense, still be relevant to colloids because, as volume fraction 
increases, excluded volume effects should act in both the molecular (i.e., hard-sphere) 
and colloidal liquids to slow down self-diffusion. 

An alternative representation of hard-sphere molecular dynamics data, developed 
from the pioneering work of Hildebrand [27], by Dymond [28], and the others, e.g., 
[29], has similarities with the behaviour of colloidal liquid (see Figure 11). Significant- 
ly, it does not use the kinetic theory of gases as its basis, 

where po = 2l’’ is the close-packed density of the f.c.c. crystal. This formula is an 
empirical fit to simulation data which emphasises the dominance of excluded volume 
effects at high density. The coefficient, Do, does appear in Eq. (6) to confer a realistic 
temperature dependence to D but otherwise makes no attempt to go over to the low 
density limit correctly. The formula in Eq. (6) has a low density limit that is not that of 
the ideal gas. Equation(6) is better expressed for the present work in the volume 
fraction form, 

DID,, = 1.271 - 2.375574. (7) 

Equation (7) has the limit D + O  at a volume fraction of 0.54, which is equal to the solid 
density at melting for a hard-sphere system. We will show that similar excluded volume 
effects are present in the model colloidal liquids which result in a density dependence to 
the long-time diffusion coefficient of the same generic form as in Eq. (7) appliFable to 
atomic fluids. 

We use the simulation techniques of molecular dynamics and brownian dynamics to 
investigate the single particle dynamical behaviour of particles in model molecular and 
colloidal systems, especially that relevant to the self-diffusion coefficients. The model 
particles interact with the same potential but undergo different equations of motion. 
This enables us to establish more clearly the similarities and differences caused by the 
different equations of motion. We choose an inverse power potential, rather than 
a Yukawa potential because it has more convenient scaling properties, and is formally 
more closely related to the hard-sphere reference fluid. 

We compare the calculated self-diffusion coefficients with experimental data on 
colloidal liquids and those from other brownian dynamics simulations. In the next 
section we outline the theoretical background to our model and its analysis. 
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98 D. M. HEYES AND A. C. BRANKA 

2 THEORETICAL BACKGROUND 

2.1 Equations of motion 

The colloidal liquid consists of interactions and processes taking place over a wide 
range of time and distance scales. As a result, for mathematical and computational 
convenience the colloidal liquid is modelled as a suspension of large and massive 
macroparticles or “Brownian” particles in a continuum Newtonian fluid medium. In 
this approach the particles interact through both interparticle colloidal forces and 
hydrodynamic forces mediated by the solvent. In addition, the solvent provides for 
each macroparticle a fluctuating thermal force which produces the well-known phe- 
nomenon of Brownian motion. The interparticle interactions are in many respects 
similar to those of simple liquids or gases and often can be represented quite well by 
a sum of interactions solely between pairs of particles. The hydrodynamic interactions 
are characteristic of the colloidal liquid (medium and particles), which are less tractable 
and the pair-wise additive approximation is not good. 

Because of the approximate treatment of the solvent, the basic equations of motion 
for N-interacting Brownian particles are not Newton’s equations but (3N coupled) 
Langevin equations, with an assumed extension to include interacting particles, [ 141 

where p is the momentum of the brownian particle, & is the brownian force on the 
colloidal particle, which is represented by a normally distributed random number. 
is the systematic or direct force between the colloidal particles (including any external 
force). The mass of the brownian particles is assumed to be many orders of magnitude 
greater than that of the solvent molecules. 

The time average of a dynamical quantity obtained from a phase space trajectory 
generated by the Langevin equations is equivalent to the phase space distribution 
average obtained from the Fokker--Planck equation. The stationary solution of the 
Fokker-Planck equation is the canonical distribution function. By virtue of this fact, 
static properties of the Brownian particle system are not influenced by hydrodynamic 
interactions and are the same as calculated from canonical M D  or M C  simulations for 
a system of particles with the same interparticle interactions. It should be stressed, 
however, that presence of a solvent will modify quite dramatically the dynamics of the 
particles. Consequently the dynamical properties of a Brownian particle system and its 
M D  conterpart are quite different (The reason for that is that the time evolution in these 
two systems is determined by the different dynamic operators [30]). 

For most treatments of the dynamics of interacting Brownian particles, only the 
configurational evolution, which proceeds on a timescale much greater than zB, is 
relevant. In this case the Langevin equations reduce to the “position Langevin 
equation”. The associated equation of motion for the configurational distribution 
function is the Smoluchowski equation. The Langevin/Smoluchowski position level of 
equations, like the momentum Langevin/Fokker-Planck level equations, produces 
canonical averages which, in the case of static quantities, are independent of hydro- 
dynamic interactions and are equal to the M D  or M C  averages. This independence 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



COLLOIDAL SINGLE-PARTICLE MOTION 99 

of the nature of the simulation method ( M D ,  M C ,  and BD) for static properties provides 
a good consistency test of the simulations. 

Our Brownian dynamics simulations are based on the position Langevin equation. 
If many-body hydrodynamic interactions are neglected this equation leads to the 
following position updating algorithm for the particle positions in time-steps, h, 
~ 3 1 1 .  

D 
k,T-  

ri(t + h) = %(t) + L F i ( t ) h  + Ari(t, h) (9) 

where i = 1 , .  . . , N are the particle labels, F is the systematic or direct forces between the 
colloidal particles (including any external force) and & is the random displacement 
sampled from a gaussian distribution of zero mean and variance ( Ar2) = 6D,h. 

The main impediment to implementation of the BD method with hydrodynamic 
interactions at the high concentrations studied here is that a simple closed form for 
them is not available. The hydrodynamic interaction, represented by a mobility tensor 
is well-known for an isolated pair of spheres in an incompressible fluid. Although the 
formulae for three and four body terms (essential at volume fractions in excess of 0.1) 
have been derived, [lS] their incorporation in a simulation is prohibitively expensive 
and formally higher order terms should also be included. In an important paper van 
Megen et al. showed that the three particle contribution to the self-diffusion coefficients 
is typically of the same order of magnitude as the two particle term, so the rate of 
convergence of the n-body expansion is extremely slow [16, 171. As yet there is no 
concensus on implementation of this aspect of colloidal dynamics. A number of models 
which attempt to include many-body hydrodynamics in an ad-hoc manner using 
a diversity of prescriptions are in the literature [ 18,191. One could argue that even if the 
full N-body hydrodynamics were included in the model that the full picture for dense 
suspensions would not be arrived at, as excluded solvent effects (when two colloidal 
particles are close to r = CJ apart) should also be taken into account. For these reasons 
we have decided here to omit many-body hydrodynamics to discover how a basic 
model for colloidal dynamics (which is still frequently used) distinguishes itself from 
that of particles interacting through the same pair potential but subject to Newton’s 
equations of motion. We especially focus attention on the self-diffusion behaviour, to 
establish the BD model’s strengths and limitations by comparing its predictions with 
recent experimental data. 

2.2 Self-diflusion coeficients 

The diffusion coefficient of the Brownian particles is not well-defined at short times and 
it is assumed to be time dependent. (Only DL is unambiguous at  t + 00.) The time 
dependent self-diffusion coefficient can be defined as being proportional to the “local’ 
slope of the mean square displacement with time, i.e., 

1 d(Ar ( t ) ’ )  
6 dt ’ 

D(t )  = - 
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or alternatively, 

D. M. HEYES AND A. C. BRANKA 

1 
6t 

D ( t )  =-(At-([)’). 

In the long-time diffusion limit both (10) and (1 1 )  give the same answer [21]. For all 
fluids at extremely short times - 10-12s, the initial increase of the mean-square 
displacement is quadratic in time, as each particle is in “free flight”. Then the mean 
square displacements are given by, 

(Aijt)’) = 3 k ,  Ttz/m.  (12) 

In the colloidal liquid, one has at infinite dilution, another time-scale of ‘sB which marks 
the onset of diffusive motion of the colloidal particle through the solvent [30]. At 
infinite dilution an explicit expression for D ( t )  can be obtained from the Langevin 
equation which illustrates the crossover from w r y  short times where Newton’s 
equations of motion need to be considered, to the short-time regime where the motion 
can be described as “diffusive” [lo]. 

For t << T,, (1  3) reduces to (12). For t :>> T~ we enter the time domain of diffusive motion, 

In the position Langevin equations of motion, Eq. (9), we have Ds = Do at all volume 
fractions. 

The systematic force autocorrelation function can be used to obtain D ( t )  [14], 

therefore, 

which leads to 

as ( F R )  = 0 and ( R ( t ) R ( t ) )  = 6mk, Ttb( t ) .  We use both Eq. (10) and Eq. (17) in these 
calculations and show them to be numerically equivalent for the small N and finite 
simulation times. 
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COLLOIDAL SINGLE-PARTICLE MOTION 101 

2.3 Simulation details 

We use Eq. (9) to evolve the particle positions. A feature of this algorithm is that as it is 
based at the position level, we cannot reproduce the deterministic dynamics valid for 
t << r,  of Eq. (13) by taking a very small time step, for example. There is no path to 
deterministic dynamics therefore. The colloidal particles in our simulations interacted 
through a soft-sphere interaction, 

where, cr, is the equivalent hard-core diameter of the colloid molecule and, r, is the 
centre-to-centre separation between the two model particles. The value of the energy 
parameter E was set to E = k ,  T in this study. This interaction could be said to represent 
a stabilised colloidal particle. The interaction is sufficiently hard to represent a hard- 
sphere for many purposes, without being too hard which could cause numerical 
problems in the continuous potential particle update algorithm. This algorithm and 
hard-core potential has recently been applied to investigate the rheology of colloidal 
suspensions, including stable suspensions [23], and flocculated suspensions (electro- 
rheological fluids and depletion flocs) [25,26]. To be specific and the consistent with 
our previous work we define the characteristic structural relaxation time, z,, to be the 
time it takes a colloidal particle at infinite dilution to diffuse a distance equal to its 
radius a = 012, 

or z, = a2/D,. The quoted thermodynamic quantities and internal programming units 
are in terms of particle-oriented quantities, where energy is in units of E,  distance is in 
units of 0 and time is in units of o(rn/E)”2. The dynamic quantities are made 
dimensionless by dividing by cr for distance, z, for time, and Do for self-diffusion 
coefficient. As the value of E is the unit of energy then the reduced temperature in the 
model is T* = 1.0. 

The random displacement of the particle per time step by the term R in the equations 
of motion of Eq. (9) requires some consideration. The random displacement in the 
x-direction is related to the infinite-dilution self-diffusion coefficient, Do, by 

and this was used to determine the time step, h. We first select a desired root mean 
square displacement for each Cartesian component, S,, which is an input parameter of 
the computer program. This parameter is chosen to be small enough to prevent 
catastrophic overlap of particles and unrealistically large interaction forces, and yet 
largeenough so that a sufficient region of phase space is explored without distorting the 
statistical averages. Equating (6:) (Eq. (20)) to S: gives 
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102 D. M. HEYES AND A. C. BRANKA 

so that the time step is determined by 6,. A problem with BD is that unlike M D  there is 
no conserved quantity that can be used to check the stability of the time stepping 
algorithm. In microcanonical molecular dynamics, for example, the total energy should 
be constant and independent of time step. Therefore another procedure must be chosen 
for BD to test the adequacy of the implementation of the position update algorithm. 
The two parameters that can be varied in the computer program are tg and h*. We 
carried out a series of simulations varying both of these parameters. There is a limit to 
how large zB  can be because h/r ,  = 6i/2.r;kB T and it is necessary for h/r,  >> 1 for Eq. (9) 
to be valid, that is, without needing to include particle momentum in the algorithm. In 
particle reduced units, provided h/zB >> 1, it does not matter how small zB is, nor does it 
influence the efficiency of travelling through phase space as the key parameter for this, 
t j h ,  is independent of the value of sB. Several values of tZ; were used 0.316 x lop4, 
0.316 x and 0.316 x which gives h/rB = 4.06,405.6 and 40558.0 respectively 
for 6, = 0.009. The ratio t,/h = ma2/26i was equal to 6172 in each case. For simulations 
of duration t / t ,  = 16.2 we found that the thermodynamic and transport coefficients 
were statistically indistinguishable for the 4 = 0.472 state point; DL/D,  = 0.13 & 0.01 
and U/N = 0.886 & 0.001, for example. Similarly using 0.316 x and choosing 
6, = 0.006 to 0.009 we found no statistically significant variation. The value of the time 
step h * ~ ;  < is comparable to the values chosen by other workers [32,33]. These 
other authors carried out preliminary M C  simulations to establish the correct struc- 
tural and thermodynamic values for the system. The BD time step was optimised on the 
basis of this data. In reduced units, typical values for T,, T, and h are 0.3 x 791 and 
0.13 respectively, for 6, = 0.009. (These parameters are determined at  infinite dilution, 
and therefore as applied in the computer program are independent of volume fraction.) 
The computations were conducted using a range of numbers of particles, N = 108,256 
and 500 particles, for typically 8 x lo5 time steps, using a neighbourhood table list 
to speed up the search for interacting particles. The simulation cell was cubic and 
periodically repeated in the three canesian directions. Interactions were truncated for 
r,, > 1.30 because of the rapidly decaying nature of the pair potential interactions. In 
order to make comparisons with the equivalent atomic fluid, molecular dynamics M D  
simulations at T* = 1.0 were carried out using a procedure described elsewhere 1351. 
The particles were thermostatted at the same temperature as those in the BD simula- 
tions. The simulations were carried out over many structural relaxation times for the 
colloidal model systems and also for equivalent times, in terms of particle displace- 
ments, for the atomic systems. 

The method for calculating the time correlation functions and mean square displace- 
ments is essentially that described elsewhere 1221, however, the normal procedure of 
starting a time origin at each time step had to be modified to allow for the extremely 
slow decay of the autocorrelation function and approach of the m.s.d. to the DL limit. 
The time correlation functions have to extend for ca. 20,000 time steps for solids volume 
fractions in excess of ca. 0.40. In order to reduce the computer memory requirements, 
the correlation function was constructed in a piece-wise fashion from three separate 
correlation functions with time origins started every (and with a resolution of) 1,lO and 
100 time steps. These three correlation functions extended for progressively longer in 
time, and non-overlapping sections were merged for the purpose of subsequent analysis 
and presentation. The number of entries in the histogram used to calculate the time 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



COLLOIDAL SINGLE-PARTICLE MOTION 103 

correlation function decreases as time increases. Nevertheless the statistics are reason- 
able for the - 800,000 time steps covered for each production simulation. 

3 RESULTS AND DISCUSSION 

To appreciate the effects of density on the compaction of an increasingly dense 
suspension we show in Figure 1 the pair radial distribution function, g(r)  as a function 
of volume fraction for the brownian dynamics states. At 4 = 0.150 there is essentially 
only first peak in g(r), with no well-defined second coordination shell. As density 
increases, a second and third coordination shell progressively develops in intensity. The 
first peak becomes sharper, reflecting a reduction in free volume as the system 
approaches maximum packing and the first coordination shell is forced to become 
more tightly packed. We considered solids volume fractions between # = 0.075 and 
4 = 0.527 defined as # = dVa3/6Vusing the potential (i as a nominal equivalent hard 
sphere. In fact, this is a reasonable approximation, as can be seen in Figure 1, which 
indicates very little interparticle penetration for r < (i. The difference in the g ( r )  in 
Figure 1 from comparable state hard-sphere examples is that no penetration for r < n 
can take place in the hard-sphere case. The hard-sphere g ( r )  also has a cusped shape as 
r -+ (i. The soft-potential used here has some penetration for r < (i but also has a peak at 

4 
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n &# W 

bn 2 
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I 0:472 (500) 
0.490 (256) 
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Figure 1 
and number of particles in the simulation in brackets are given on the figure. 

The pair radial distribution function of the BD model colloidal liquids. Key: The volume fraction 
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104 D. M.  HEYES AND A. C. BRANKA 

16 

14 

12 

10 

r > cr. Therefore, in some sense, cr in the inverse power potential can be said to be 
a reasonable choice for the equivalent hard-sphere diameter. 

The correction to cr to an equivalent hard-sphere diameter depends on the criterion 
used for matching the physical properties but the multiplicative factor is less than 
-(1 + n/2) ,  where n is the potential exponent, so the potential, n = 36 is seen to be 
equivalent to a hard sphere for the present purposes. In the experimental colloidal 
systems, correlations to the core diameter, oc, due to a soft-repulsive outer shell are for 
charge stabilised systems - (1 + 2 /~a , )  where 1 / ~  is the double layer thickness, and for 
sterically stabilised particles, - ( 1  + 2A/oc) where A is the assumed thickness of the 
stabilising layer. In the colloidal, there are, in these cases, two quite distinct chemical 
regions composing the “effective” particle, which makes a correction to the nominal 
volume fraction more necessary than in the case of these model particles. As a guide to 
the underlying phase diagram, the simulation state 4 = 0.472 is close to the maximum 
equilibrium fluid density of the hard-sphere fluid (4 = 0.498). States above this density 
show an increasingly pronounced system size and time dependence, reflecting the 
divergence in structural correlation lengths and times associated with this part of the 
phase diagram. 

In Figure 2, we show the coordination number, n(r ) ,  

i , ?  . .  
, ‘I  j 
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- 0.350 (108:) - - - - - - . - -  
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, ),;./ ; 
; ! j 

, ‘ I  j , /’ / , ;  j 0.250 (108:) . / ’ /  ,:: 
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Figure 2 The coordination number in the first coordination shell of the states of Figure 1 
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COLLOIDAL SINGLE-PARTICLE MOTION 105 

which is the average number of particles in radius r around a particle. We observe 
a change in functional form of n(r)  for r -+ O, evolving from a n(r)  - ra where tl < 1 to 
c( > 1 as 4 > 0.350. At 4 = 0.400 there is less than one neighbouring particle at r = o 
which then grows to three neighbours at r = 1.10. This rapid increase in average 
coordination number with r becomes more pronounced as volume fraction increases. 
In Figure 3 the g ( r )  for, 4 = 0.472, brownian dynamics and molecular dynamics states 
are compared. They are indistinguishable indicating that the BD algorithm is simula- 
ting a canonical ensemble to a good approximation. At, d, = 0.527, the system is in the 
solid-fluid two phase part of the phase diagram. In Figure 4, we compare the g ( r )  for an 
M D  and BD state at this volume fraction. The BD state manifests a g ( r )  typical of 
a liquid (with a some evidence of undercooling evidenced by the shoulder to the second 
peak), whereas the M D  state has clearly at least partly nucleated into a micro- 
crystallite, evident in the peak at r = 1.60. The BD state at 4 = 0.527 is close to the 
compression glass-transition of a simple liquid, which occurs at 4 !z 0.55 [34]. How- 
ever, there is no significant evidence of a glassy structure, which would be apparent in 
a split second peak in the pair radial distribution function. It has been argued that the 
current BD algorithm is incapable of producing a glass because the presence of the 
Brownian forces ensures that the particles are never at  rest [33]. The random force term 
is decoupled from the other forces and this term keeps the particles in constant motion. 
In contrast, in M D ,  structurally arrested states are more readily produced, demon- 
strated by the partly nucleated sample shown in Figure 4. 

3.5 I I I I I 

2*5 t 
4 

MD 0.472 (108) 0 

BD 0.472 (108) + * 
4 

0 

0 I 1 I 

0 0.5 1 1.5 2 2.5 
r 

Figure 3 The pair radial distribution function of a BD and M D  simulation at (b = 0.472 with N = 108. Key: 
MD, diamonds, and BD crosses. 
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Figure 4 As for Figure 3, except 4 = 0.527. 

The thermodynamic properties of the BD and MD systems are compared in Tables 1 
and 2, respectively. These tables also give details specific to each simulation carried out. 
The average potential energy per particle u = U/N is tabulated, 

Table 1 
'S t,,,. 

Details of the ED simulations. Key: The length of the simulation over which averages were collected 

N 4 t,,,iL U*IN (C2> DLID, 

108 
108 
108 
108 
108 
256 
108 
108 
256 
500 
256 
108 
108 
256 

0.075 
0.115 
0.150 
0.250 
0.350 
0.400 
0.427 
0.472 
0.472 
0.472 
0.490 
0.500 
0.527 
0.527 

455 
143 
444 
113 
63 

330 
397 
153 
151 
217 
182 
122 
133 
113 

0.03217 
0.05627 
0.08185 
0.1892 
0.3893 
0.5443 
0.6572 
0.8939 
0.8945 
0.90 16 
1.0169 
1.0763 
1.0579 
1.1293 

27.98 
48.97 
71.35 

166.31 
346.26 
485.66 
590.12 
811.73 
811.77 
819.08 
927.44 
984.04 
955.63 

1026.03 

0.880 
0.799 
0.749 
0.581 
0.402 
0.291 
0.253 
0. I54 
0.150 
0.157 
0.124 
0.1 10 
0.0471 
0.0293 
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COLLOIDAL SINGLE-PARTICLE MOTION 107 

Table 2 Details of the M D  simulations using the same particle potential as for the BD simulations; 
otherwise as for Table 1. The simulations were carried out isokinetically at T* = 1. The self-diffusion 
coefficients using the Erpenbeck (Eq. (3)), Dymond (Eq. (6)) and Speedy formulae (Eq. (2)) are denoted by 
ERP, DYM and SPD, respectively. 

N d t k  U*/N ( F Z 2 )  DGD D B R P  D h ' M  %PD 

108 0.150 8020 0.0807 67.41 0.568 0.600 0.676 0.559 
108 0.250 5340 0.1882 158.03 0.260 0.295 0.300 0.261 
108 0.350 2450 0.3850 325.29 0.107 0.142 0.139 0.124 
108 0.400 3000 0.5422 460.04 0.0698 0.0900 0.0888 0.0788 
108 0.427 4500 0.6518 554.26 0.0575 0.0671 0.0666 0.0587 
108 0.472 19000 0.8814 753.08 0.0289 0.0362 0.0351 0.0315 
108 0.527 3oooO 0.8977 754.37 O.O(cryst.) - - - 

One useful feature of the inverse power, r-",  potentials considered here is that the 
interaction component of all the equilibrium thermodynamic and mechanical proper- 
ties are proportional to u. In addition, this functional form has useful scaling behaviour 
which collapses the phase diagram onto a single p, Tcurve [ 3 6 ] .  For example, the 
potential interaction (osmotic) pressure of the particles in both the MD and BD states is 
given by, 

P = n p ( u ) / 3 .  (24) 

potential, n = 36 is in practice very close to the hard-sphere limit. The values for u of the 
corresponding BD and MD systems agree within statistical uncertainties, adding to the 
evidence that both algorithms generate the same distributions in coordinate phase 
space. Tables 1 and 2 show that there is some N-dependence 4 > 0.472 (BD)  and an 
increasing difference between BD and M D .  The time step variation study discussed in 
the Simulation Details section proves that this is not due to the size of the time step 
being too large. Rather, the observed variation in ( u )  with N is to be expected as these 
states are close to or within the fluid-solid coexistence part of the phase diagram. The 
systems become less frustrated with increasing N, allowing closer particle approach on 
average and therefore an increase in (u ) .  

The dynamical behaviour of the two models are quite distinct. In Figure 5, we 
present the velocity auto-correlattion functions, C,(t)  normalised so that C,(O) = 1, i.e., 

Examples of the C,(t)  for the atomic fluids at a range of volume fractions are presented 
in Figure 5. They show a slow monotonic decay at low volume fractions reflecting the 
weakness of interactions with other particles. At high volume fractions, a negative 
region appears at intermediate times indicating some "back-scattering" of the particles 
from their surrounding cages and a much stronger interaction with neighbouring 
particles. The derived time dependent self-diffusion coefficient is given by, 

D ( t )  = ( A r 2 ( t ) ) / 6 t  = dt'(f(O).E(t))(l - t'/t). sd 
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C 
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3 
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Y 5: 
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5: 
3 

x 
Y .- 
A 

Figure 5 

0.150 __ 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 
time 

The normalised velocity autocorrelation function of the M D  states using Eq. (25). The volume 
fractions are given on the figure. 

The D ( t )  for the data in Figure 5 ,  are given in Figure 6 and the limiting self-diffusion 
coefficients as t + a3 are listed in Table 2. Comparisons are made with the Erpenbeck, 
Dymond and Speedy parametrisations of hard-sphere diffusion coefficients. The 
hard-sphere D are typically 5-10% larger than the r -  36 self-diffusion coefficients at the 
same volume fraction, indicating the effects of the softness of the interaction. 

There are no velocities in this BD algorithm because tg << h << T, indicating that the 
colloidal particle’s momentum decays well within the time step, so any “memory” of the 
particle’s velocity is insignificant between successive time steps. In its place, the forces in 
BD assume, in some sense, an equivalent role to that which velocity has in MD, in being 
used to calculate the deviations in the self-diffusion of colloidal particles at  finite 
volume fraction from ideal (i.e., Q-0) behaviour (see Eq. (17)). In Figure 7, the 
normalised C,(t) calculated as follows, 

are shown for the atomic fluids. We note that, for the M D  systems, the C,(t) show 
a more pronounced negative region (evident at all volume fractions). The depth of the 
minimum increases with density and its position moves in to shorter times, which is 
consistent with the picture that the particle interacts more strongly with its cage of 
neighbours as number density increases. In Figure 8, the corresponding C,(t) for the 
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Figure 6 The D ( t )  using Eq. (26) applied to the velocity autocorrelation functions of Figure 5. The volume 
fractions are given on the figure. 
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Figure 7 The normalised force autocorrelation function of the MD states using Eq. (27). The volume 
fractions are given on the figure. 
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1 
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Figure 8 As for Figure 7, except that the E D  method was used. 

brownian systems are shown. They are dramatically different from those of the 
corresponding atomic fluids, showing no evidence of collision recoil but rather that of 
the damped dynamics of Langevin BD in the h/r ,  + co limit. The C,(t) are intregated 
using Eq. (17) to obtain D(t) /D, .  The force autocorrelation function route to the 
diffusion coefficient of (1 7) agrees well with the local-slope of the mean square 
displacement method of Eq. (lo), as revealed in Figure 9 for a dense 6 = 0.490 BD state. 
The dependence of D(t) /Do on solids fraction using Eq. (10) is given in Figure 10. To be 
confident that D(t) /Do has reached the t + co limit it is necessary to follow the mean 
square displacements and force autocorrelation function out in time at least 37,. As 
volume fraction increases, the ratio, D(t) /Do,  decreases, indicating a reduced mobility of 
the particles at long times. The t -, a) limiting values of D(t) /Do are given in Table 1. We 
note that although the diffusion coefficients in particle orientated units are quite 
different for MD and ED, typically 0.03 - 0.6 and 3 x respectively, the time steps 
are much larger in the case of ED, so typical displacements per time step are 
comparable for the two techniques. 

In a model without many body-hydrodynamics it is expected that the self-diffusion 
coefficient as t -0  will equal Do [30], which is what we observe at all densities (see 
Figure 10). 

The first three DL/Do in Table 1, for $I = 0.075,0.115 and $I = 0.1 50 fit well to Eq. (1) 
with the coefficient a = 1.7 k 0.1 close to the predictions of several effective medium 
theories without rigorous many-body hydrodynamics, which give a = 1.8 & 0.1 [ 6 ] .  
The data in Table 1 is compared with some literature experiment and simulation values 
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0 0.5 1 1.5 2 2.5 3 3.5 
time 

Figure 9 A comparison between the mean square displacement (Eq. (10)) and force autocorrelation function 
Eq. (17) routes to D(t) /D,  for a 4 = 0.490 ED state and N = 256. 
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Figure 10 The D(t) /D,  using Eq. (10) applied to the ED particle mean-square displacements. 
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Figure 1 I The D(tL’D,  of experimental and simulation. Key: Experiment: [4], PVA itabilised by 
PHS(u = 0.1 8 pm). Open circles, DS!D,; filled circles, DLID,; triangles. polystyrene spheres (u = 0.41 pm), 
DS:D, [2]; Simulation: +, this work, x [38]. 

in Figure 11. Experiments using photon correlation spectroscopy [2, 51 have shown 
that the ratio, Ds/D,, decreases essentially linearly with volume fraction. Interestingly 
the ratio is non-zero ( - 0.17) at the melting volume fraction of0.54, whereas the D L / D ,  
and the hard-sphere atomic fluids have an essentially zero value for the self-diffusion 
coefficient at this volume fraction (given by Eq. (2), Eq. (3) and Eq. (6 ) ) .  The experimen- 
tal Ds/D,  is still finite at the freezing transition, indicating that at “short-times” there is 
still a substantial level of local self-diffusion even though gross movement within the 
lattice or glass has effectively ceased. There have been a number of brownian dynamics 
simulations of the self-diffusion coefficient with a screened coulomb interaction, that 
have examined the concentration dependence of the long-time self-diffusion coefficient 
[37, 381. They have all apparently used the same algorithm as in this work, without 
many-body hydrodynamics. A comparison between the experimental and simulation 
results is given in Figure 11. The simulation data of DL/Do  ironically agrees well with 
theexperimental DSjDo up to 4 = 0.4. For higher volume fractions the simulation value 
of DLiDo decreases more rapidly than the experimental Ds/D,, however instead tending 
to zero at 4 = 0.54, as does the experimental DL/D,.  Similar behaviour is obtained by 
the calculations of the long-time self-diffusion coefficient made by Lowen and Szamel 
[38]. I t  would appear that the simulation model used in this work gives values for 
DL/D,  that are closer to the experimental D s / D ,  than to the experimental DL/D,.  The 
lack of solvent mediated many-body hydrodynamics clearly causes a major difference 
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Figure 12 
volume fractions and number of particles used are given in the figure, the latter in parentheses. 

Root mean square displacements of the particles in the ED systems as a function of time. The 

between the simulation and experimental DL/Do.  The model gives a Ds/Do which is 
independent of density and equal to unity. In contrast, the experimental DS/Do 
decreases with volume fraction, presumably because the solvent mediated interactions 
between the particles cause them to interact even on the “short” time scale (which can 
be of order a simulation time step). 

A notable feature of these simulations is that the model produces a DL/Do which is 
close to the experimental Ds/Do for volume fractions below ca. I#J = 0.4. The root mean 
square displacements of the particles are of order t~ or greater at the end of the sampling 
length (= 3.22,)  as revealed in Figure 12, so we clearly have achieved displacements at 
which the surrounding particles have to reorganise for the tagged particle to diffuse 
further. Yet even at this time we obtain diffusion coefficients which are for #J ~ 0 . 4  
numerically indistinguishable from Ds, which according to the usual assumption is 
only valid for displacements << 0. It is as though in the model it is taking the particle 
several 2, to interact with other particles in some sense, to the same extent, that real 
brownian particles do at much shorter times because of the hydrodynamic interactions, 
which are essentially instantaneous on the particle’s time scale. The many-body 
hydrodynamics acts as a mechanism for rapidly transmitting a force between the 
particles, so they interact strongly without having to physically collide. The experimen- 
tal DL/Do are below the Ds/Do.  The coupled hydrodynamics and long distance 
diffusion of the particles are introducing additional correlations in the particle motion 
not accounted for by the present model. 
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For volume fractions in excess of 4 = 0.4 the simulation DL/Do fall below the 
experimental Ds/Do and converge on the experimental DL/Do data. Hindered motion 
due to excluded volume effects at high volume fraction would appear to be reducing 
(but by no means eradicating) the influence of the brownian motion. 

4 CONCLUSIONS 

We have made a detailed comparison between the dynamics of a model molecular and 
colloidal liquid interacting via the same pair potential. Their dynamics have been 
characterised by force autocorrelation functions and mean square displacements. We 
have shown that, although the structural and thermodynamic properties of the 
molecular and colloidal systems with the same interaction potential are distinguishable 
(as they should be formally), their dynamical behaviour is quite different. The BD force 
autocorrelation functions manifest a damped decay with no negative region. Whereas 
the M D  systems show strong backscattering at high volume fraction, evident in 
a negative region in the force autocorrelation function. The BD mean square displace- 
ments show no inertial behaviour at short time, in contrast to the M D  systems. In the 
colloidal liquids the present simulations have helped establish the important role made 
by solvent mediated many-body hydrodynamics on colloidal single particle motion on 
all diffisiue time scales. For the model colloidal fluid, at all volume fractions, the 
simulated short-time diffusion coefficient is identical to Do, that of the experimental 
colloidal particles at infinite dilution. The simulation long-time diffusion coefficient 
follows closely the behaviour of the experimental short-time diffusion coefficient for 
volume fractions lower than ca. 0.4. 
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